MODS Assay for the Diagnosis of TB

TO THE EDITOR: In their article on the use of microscopic-observation drug-susceptibility (MODS) culture for the diagnosis and direct detection of multidrug-resistant tuberculosis, Moore et al. (Oct. 12 issue) state that MODS culture offers faster and more sensitive results than existing gold-standard methods. This study is one of the few performed in a target population with a rather simple and inexpensive method that seems to be appropriate for countries with limited resources.

However, we would like to stress that there are other options that have recently been described and are currently under evaluation. As compared with MODS culture, the nitrate reduction assay, based on a simple procedure involving the use of Löwenstein–Jensen medium, has been tested in sputum samples with similarly good results. The thin-layer agar method, which is similar to MODS culture but with solid medium and standard microscopes, had better results than conventional methods when evaluated in target populations. In ongoing evaluations, the thin-layer agar method has also outperformed the reference method for detecting multidrug-resistant tuberculosis. In addition, direct colorimetric methods with redox indicators have performed very well and are under further evaluation. A disadvantage of the MODS method remains the requirement of an inverted microscope, which is not routinely available in laboratories that perform diagnostic tests for tuberculosis.

Juan-Carlos Palomino, Ph.D.
Anandi Martin, Ph.D.
Francoise Portaels, Ph.D.
Institute of Tropical Medicine
2000 Antwerp, Belgium
jcpalomino@itg.be


TO THE EDITOR: The MODS assay has certain limitations. Microscopical differentiation between microcolonies of Mycobacterium tuberculosis and those of rapidly growing mycobacteria may be difficult. The assay requires daily examination, is time-consuming, and as highlighted by Iseman and Heifets, carries a risk of laboratory transmission. We therefore agree that the microscopical-observation method, although promising, will require modification and adaptation before it can be recommended for widespread use.

Rumina Hasan, M.B., B.S., Ph.D.
Seema Irfan, M.B., B.S.
Aga Khan University
Karachi 74800, Pakistan
rumina.hasan@aku.edu

Refining Prognosis in Non–Small-Cell Lung Cancer

TO THE EDITOR: Potti et al. (Aug. 10 issue) apply a metagene model to the profiling of non–small-cell lung cancer (NSCLC) and demonstrate superior performance in predicting tumor recurrence and survival, as compared with a clinical model. We believe that the impressively contrasting results could be partially due to the incompleteness of the clinical model the authors used. Classifying NSCLC into squamous-cell carcinoma and adenocarcinoma has not been predictive for prognosis in general. However, subtypes of adenocarcinoma — bronchioloalveolar carcinoma and mixed adenocarcinoma with a bronchioloalveolar component, which account for approximately 20% of cases of early-stage NSCLC — have a much better prognosis than do other subtypes. Potti et al. did not consider these adenocarcinoma subtypes.

In addition, the literature and our recent work demonstrate that the histologic grade is a significant predictor of both tumor recurrence and survival, and there is a high correlation between histologic features and gene-expression profiles. Our work also shows that incorporating the adenocarcinoma subtype and histologic grade into clinical models would provide a prediction very similar to that of a well-validated, 50-gene panel for survival.

Zhifu Sun, M.D.
Ping Yang, M.D., Ph.D.
Mayo Clinic
Rochester, MN 55905
sun.zhifu@mayo.edu